7.6

de
 Révision éclair

Deux événements sont indépendants quand le résultat de l'un ne dépend pas du résultat de l'autre. Lancer une pièce de monnaie et faire tourner la flèche d'une roulette est une expérience qui comporte deux événements indépendants.

Quand tu lances une pièce de monnaie, les résultats possibles sont: pile ou face.
Quand tu lances une pièce de monnaie, les résultats possibles sont: blanc, noir, rayé ou pointillé.

Tu peux utiliser un diagramme en arbre pour montrer les résultats d'une expérience qui comporte deux événements indépendants.

Nomme les résultats de l'événement qui consiste à faire tourner la flèche. Pour chaque résultat, nomme les résultats de l'événement qui consiste à lancer une pièce de monnaie.

Il y a 8 résultats possibles.
Cet ensemble de résultats est l'espace échantillonnal.
La probabilité théorique que la flèche s'arrête sur le secteur rayé et que la pièce tombe du côté pile est de: $\frac{1}{8}$.

Ernesto fait cette expérience 100 fois.
Onze fois, la flèche s'est arrêtée sur le secteur rayé et la pièce est tombée du côté pile.
Donc, la probabilité expérimentale de cet événement est de: $\frac{11}{100}$.
La fraction $\frac{1}{8}$ est proche de la fraction $\frac{11}{100}$, donc, la probabilité expérimentale est proche de la probabilité théorique.

Plus on refait une expérience, plus la probabilité expérimentale et la probabilité théorique se rapprochent.

1. La probabilité théorique qu'un nouveau-né soit un garçon est de 50%, et la probabilité que l'enfant soit une fille est de 50%.
a) Complète le diagramme en arbre pour montrer les résultats possibles des naissances de deux enfants.

Résultats

fille

fille, fille (4)

e) Quelle est la probabilité théorique d'avoir deux filles? $1 / 4$
f) Un sondage auprès de 100 familles de deux enfants indique que 24 familles ont deux filles.

Quelle est la probabilité expérimentale d'avoir deux filles?

168
2. Indique l'espace échantillonnal de chaque expérience.
résultato possibles
a) Lancer une pièce de monnaie et jeter un tétraèdre numéroté de 1 à 4 .

b) Faire tournezla flèche de la roulette 1 et faire tourner la flèche de la roulette 2.

. un sandwich au fromage ou un sandwich au beurre d'arachide; C3 D3
: des raisins ou une banane ou une pomme;

- du lait ou du jus.
a) À l'aide d'un diagramme en arbre, montre tous les choix de lunch possibles.

b) Suppose que tu choisis un lunch au hasard.

Quelle est la probabilité que le lunch contienne:
I) un sandwich au beurre d'arachides? $6 / 12=1 / 2$
III) un sandwich au saucisson?

iv) un sandwich au fromage, des raisins et du lait? \qquad
4. Un tétraèdre est numéroté de 5 à 8 .

Tu fais rouler le tétraèdre et tu fais tourner la flèche de la roulette.

a) Construis un diagramme en arbre pour montrer les résultats possibles.
b) Calcule la probabilité théorique d'obtenir des nombres différents sur le tétraèdre et sur la roulette. \qquad
c) Calcule la probabilité théorique d'obtenir le même nombre sur le tétraèdre et sur la roulette. \qquad
d) On refait cette expérience 50 fois.

Il y a 11 résultats où les nombres sont les mêmes.
Quelle est la probabilité expérimentale d'obtenir les deux mêmes nombres? \qquad
e) Quelle comparaison peux-tu faire entre la probabilité expérimentale de la partie d) et la probabilité théorique de la partie c)? Explique ta réponse.
\qquad
\qquad

